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Abstract 

Modelling the term structure of interest rate has become very important in recent days 

because the predictability of the variables induces informed decision to various market 

stakeholders, regulatory authorities and investors who might need such information. A 

deep knowledge of this model’s structure is essential in appraising the interest rate risk 

of financial institutions since investment decisions resulting from liquidity gaps have 

effect on interest rate risk. The study contributes to the asset-liability administration of 

Nigerian financial institutions thereby providing a solution to the cost effective 

approximation of defined term structures problem which are applied in establishing 

fund transfer pricing mechanisms. Therefore, investment houses require estimations of 

interest rates so as to price derivative instruments and for pension funds, future interest 

rate are of keen interest to estimate the value of their assets and liabilities. The objectives 

of the study are (i) To predict the in-sample of the Nigerian Eurobond under the Bjork 

and Christensen four-factor model (ii) To derive the console rate and short term rate 

and show the mathematical relationship between the rates (iii) To investigate whether 

time to maturity has an effect on term structure of interest rate. (iv) To derive the yield 

function from the forward rate function. The approach used to estimate the model 

parameters is the ordinary least square method. The resulting computed parameters 

were used to estimate the in-sample yield after it was being substituted in the model. Test 

of goodness of fit was conducted and the result reveals that the model fits in well with 

the observed data yield and this was demonstrated by the model’s -square adjusted by 

comparing yield curve between the observed and predicted yields.  

Keywords: Bjork and Christensen four-factor model, Predictability, term structure of 

interest rate, yield curve model   
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1.  Introduction 

Term structure of interest rates defines the mathematical relationship between yield 

to maturity of risk free zero coupon bond and their maturities. Consequently, it is 

described by means of a yield curve indicating varying rate at different maturities. 

In (De Pooter, 2007) it is confirmed that nine out of thirteen Central Banks that report 

their curve estimation methods to the Bank of International Settlements use the 

Nelson-Siegel class or their variants of which Bjork and Christensen is one. The 

European Central Bank used the extended Nelson-Siegel model to estimate the term 

structure. Following (Ibanez, 2015; Wahlstrom, at al., 2021, Atsushi, 2022), the 

yield curve can assume different trajectories associated with upward sloping, 

downward sloping, flat or humped shaped. From the financial mathematics literature, 

it can be observed that all term structure models can be categorized as either spline 

based technique or parametric based technique. The current structure is a function 

based model which falls under the Nelson-Siegel’s class of parametric models since 

they are categorized as single valued functions that are defined over the entire 

maturity domain. Essentially it is developed to estimate one of the three equivalent 

forms of the term structure tools: Spot rate, discount rate or forward rate function. 

Nigeria’s bond market representing a major component of the capital market and an 

important means of monetary transmission framework has suffered continuous 

liquidity problems. A bond produces a negative yield when the price that investors 

pay for it is greater than the interest and principal they will get back over its life. 

Investors may be willing to accept this loss in exchange for the relative safety that a 

borrower such as a fiscally strong government or a major corporation provides and 

consequently, this scenario occurs when the economy is weak. The inadequacy of 

debt instruments have been responsible for the poor performance of the capital 

market operations. In capital market, there are many kinds of investments of which 

zero coupon bond is one and the interest rate earned on this bond is the yield. The 

yield represents the market expectation and at same time relies on the interest rate 

trajectories based on the market price at a definite time. The objectives of the study 

are (i) To predict the in-sample of the Nigerian Eurobond under the Bjork and 

Christensen four-factor model (ii) To derive the console rate and short term rate and 

show the mathematical relationship between the rates (iii) To investigate whether 

time to maturity has an effect on term structure of interest rate. (iv) To derive the 

yield function from the forward rate function. The study contributes to the asset and 

liability administration of financial institutions in Nigeria by providing a solution to 

the estimation of defined term structures which are applied in setting up fund transfer 

pricing mechanisms. In (Gasha, at al., 2010; Hokuto, 2019), an appropriate 

estimation of the term structure of interest rates represents a core function in actuarial 

and financial risk management such that monetary policymakers find it useful when 

advising government. Following (Vasicek, 1977; Ranik at al., 2021), as the 

projection of the economic variables arouses informed decision to appropriate policy 

makers who would need such information, the yield curve is employed to appraise 
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the effect of fiscal policies across the whole economy provided the current interest 

rate and the implied forward rate curves are known. This may consist of ensuring 

adequacy of derivative pricing and hedging, projecting the yields over long-term 

instruments and enhancing the monetary policies and debt policies, consequently, 

adequate techniques of computing the yield curves should be established that could 

be applied to support fiscal decisions. Following (Due and Rui, 1996; Evans and 

Marshall, 2001; Diebold and Canlin, 2006; Ishii, 2018; Jan, at al., 2023), the term 

structure of interest rates at definite maturity horizons define core inputs into the 

valuation of various investible instruments such that quantitative representation of 

interest rate risk will be markedly important to investors. Since investment managers 

constantly employ interest rate spreads between short-term and risky rates as a 

measuring instrument to measure the relative liquidity risk and credit worthiness, a 

deep knowledge of the drivers of interest rates trajectories and the determinants of 

bond returns would seem important for fixed-income investors. Experts investigate 

yield curve models that concentrate on the dynamics of the term structure to the 

extent that the desire for such models is aroused by the increasing need to price 

appropriately over long term horizons interest rate derivatives such that in attaining 

this objective, it is necessary to model the yield curves and the volatility of interest 

rates when they occur over time. In (Ilmanem and Iwanowski,  1997; Wu, 2003; 

Rajna, at al.,  2010 and Christensen, at al., 2011; Nymand-Anderson, 2018), by 

reason of the rapid spread of term structure models which have been suggested 

previously, the phenomena seems to be theoretically and slowly investigated because 

it falls within the center of valuation problems experienced in actuarial finance. 

Usually, various financial assets are valued by discounting the expected future cash 

flows to the present provided a suitable discount rate function which encapsulates 

within an underlying phenomena on term structure is known. 

 

1.1. Mathematical preliminaries of term structure of interest rate 

A zero-coupon bond commencing at the time  and maturing at time S is a security 

bounded by a legal promise from the party issuing it to pay one unit of money to the 

bondholder at maturity time. The price ( ),p S  for S   reaches the maximum at 

time S and consequently as S → , ( ), 1p S S =    

The yield to maturity ( ),Z S  at the time  of a zero coupon bond defines the 

continuously compounded rate of return through which the price of a zero-coupon 

bond ( ),p S   progressively rises from time  to time S  so as to accrue 1 unit of 

money at time S and consequently,  
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Suppose that ( )p  represents the time  market value of a fixed coupon bond with 

coupon payments dates arranged as 1 2 3 ... mS S S S     having corresponding 

coupons 1 2 3, , ,..., m     together with nominal investment M , then by reason of  

(2), the market price at time  of the zero coupon bond is expressed by   
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where ( ), jp S represent the discount factors mapped into the coupon payment j

while ( ), jZ S defines the continuously compounded yield described by (4)  

The instantaneous spot rate ( )R  at time   represents the yield function on the 

currently maturing bond. Using equation (4), we have  

 

( ) ( ) ( )lim , , 1
S

R Z S Z


   
→

= = =      (7) 

 

The instantaneous spot rate function is the rate of return received by investors within 

the subsequent short interval of time. From equation (4), the yield curve defines the 

function ( ),S Z S→ such that at time  defines the functional relationship between 
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the bond’s yields and their respective time to maturity. Considering an investor who 

at time   holds a bond having maturity at time 1S  whose price is ( )1,p S and 

wishes to roll it forward to the subsequent equivalent period of time 2 1S S  to a 

fixed rate ( )1 2, ,f S S that is agreed upon presently. This implies investing at time   

in a bond maturing at time 2S  and trading for the price ( )2,p S . This means that the 

forward rates are interest rates or the rate of return that are locked in now for an 

investment in a future time such that they are set consistently with the current term 

structure of discount factors. These rates are obtained from the equations 

  

( ) ( ) ( ) ( )2 1 1 2, ,

1 2, ,
S S f S S

p S p S e


 
− 

=
     (8) 

which holds for any pair of maturities j kS S  

From (8), ( )1 2, ,f S S  becomes  
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Using equations (2) we have 
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This is the rate of return for an investment on a forward contract entered at time 

but starting at time 1S  and provides payment at time 2S  
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In defining the instantaneous forward rate ( ),f S , we need to set 1S S=  and let 

2S S→ and hence ( ) ( )
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Consequently, the forward rate function is defined as ( ),S f S→ and defines the 

graph of forward rate for all maturities. From equation (4) 
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Thus, by the mean value theorem for integrals, the continuously compounded spot 

rate defines the average of the forward rates occurring between the times  and S  

 

2. Material and Methods 

The historical end-of-day average bid task price and yield quotes for the Nigerian 

Eurobond from January to December of the year 2020 was obtained from Nigerian 

debt Management Board which was quoted by Bloomberg. The maturities obtained 

and used are one year, two years, three years, five years, seven years, ten years, 

eleven years, twelve years, eighteen years, twenty seven years and twenty nine years. 

The (Nelson and Siegel, 1987) model which was formulated by (Diebol and Li, 

2006) was modified with the goal of fitting the forward rate curve at a given date as 

an approximating function. The Nelson-Siegel model initially presumes that the 

forward rate function follows a matrix function of the form  
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The model consists of a constant 0f  and an exponentially decay function 1f  derived 

from the second order differential equation of the form 

 
2

2 1 02
0

d f df
f

dt dt
  + + =       (24) 

denoted here by 2f . The forward rate function can be functionally expressed in the 

form 

0 0 1 1 2 2f f f  + +         (25) 
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0 1 2( ) exp( ) exp( )t t t t t tf       = + − + −    (26) 

where 0 1 2; ; ;t t t t     are the varying parameters. 

The yield curve (yield as a function of maturity) can also be derived as below 
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Solving the above function we have the spot rate as 
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where 0 1 2; ; ;t t t t     are parameters. When we take the limiting values of the 

function ( )y  as  tending to infinity, the resulting value is 0t  and when we tend 

the function to zero, the resulting values is 0 1t t +    (32) 

 

Hence, the consol rate 0lim ( ) tZ

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=     (33) 

Thus, we can posit that 0t  is the long rate. 

 

We calculate the limit of the function tending to zero as follows: 
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Applying the L’Hopital’s hypothesis to the second term, we have 
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This implies that the short rate is  0 1t t +  

Following (Nelson and Siegel, 1987) the shape flexibility could be alternatively 

explained by interpreting the parameters of (31) as defining the strengths of the short-

term, medium-term and long-term function of the forward rate curve. 0t  contributes 

to the long-term function, the contribution of the short-term function is 1t  while 2t   

shows the contribution of the  

medium-term function. Apparently, the medium-term function within the model 

commences at zero and exponentially decays to zero. The short-term function seems 

to be the fastest decaying functions within the model and decays monotonically to 

zero. To increase the flexibility of the Nelson Siegel model, (Bjork and Christensen, 

1999) modified the model by introducing an additional factor that made it a four-

factor model. 
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2.1. Model specification (Bjork and Christensen) 

In the study we seek to analyze and model the term structure of interest rate of the 

Nigerian Eurobond. In order to achieve this objective, this study adopts the  

Bjork and Christensen four-factor model. The yield function through Bjork and 

Christensen’s model is described as follows: Observe that the forward function is 

given as 

1 2 3, 4,

2
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Then the yield function is 
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where 1 2 3 4  and   are parameters. 

Using equation (26), the yield curve function could be derived by integrating the 

forward rate function. 
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Thus, the yield function becomes 
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Theorem 2  

If the yield function is 
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. .Q E D  

2.2. Method of data analysis 

We also employ the ordinary least square method to analyze the Bjork and 

Christensen model given the observed data. Essentially, in order to obtain Lamda 

following (Diebold and Canlin, 2006), the third term in equation (51) can be 

expressed as 
1

arg max
t

t

t

e
e









− −
= − 

 
 where 0.0609 = and such that the 

loading of the curvature factor achieves its maximum for a maturity of 2.5  years 

which is usually observed as the medium term.  
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The data presented in this study involves the daily closing of the Nigerian Eurobond 

which comprises January to December 2020 to analyze and fit the Nigerian 

Eurobond yield curve using the Bjork and Christensen (1999) four-factor model. 

The data for the whole year 2020  were analyzed and the findings were also depicted 

in graphs and tabular form to include other statistic not captured on the curve and 

also to enhance easy access to the statistic numerical values. 

 

Aggregate Descriptive Analysis 

The daily yields of the Nigerian Eurobond were extracted and analyzed based on 

descriptive analysis in order to have the necessary statistics for further analysis and 

also for an informed decision. The overall descriptive data is presented in table 1 

which will be used to analyze the aggregate model as presented below: 

Table 1: Aggregate Descriptive Statistics 

Maturity N Minimum Maximum Mean 
Std. 

Deviation 
Variance 

1 years 250 -1.0690 16.8150 5.052452 4.1617513 17.320 

2 years 250 2.2750 14.2740 5.623268 2.9418536 8.655 

3 years 250 2.8480 15.1730 5.916892 2.9572819 8.746 

5 years 250 4.1230 15.8540 7.132140 2.6467443 7.005 

7 years 250 5.1320 14.1940 7.533984 2.1501411 4.623 

10 years 250 5.9680 13.7050 8.004524 1.8366449 3.373 

11 years 250 6.5020 15.7820 8.635112 2.0687794 4.280 

12 years 250 6.5320 15.2730 8.541268 1.8034079 3.252 

18 years 250 6.9940 13.4140 8.649296 1.4474288 2.095 

27 years 250 7.1230 13.0210 8.620676 1.2674708 1.606 

29 years 250 .0000 14.7490 9.206624 1.6376774 2.682 

       

 Source: author’s computation via SPSS 23 
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 Figure 1: Aggregate Nigerian Eurobond Yield curve 2020 
 

From the above table1, the overall descriptive statistics presented eleven tenors. 

This includes one year, two years, three years, five years, seven years, ten years 

eleven years, twelve years, eighteen years, twenty seven years and twenty nine 

years with respective average yield of  

5.052452,  5.623268,  5.916892,  7.132140,  7.533984,  

8.004524,  8.635112,  8.541268,  8.649296,8.620676  9.206624and
 

respectively. From table 1 and figure one, it is observed that the aggregate yield 

curve is upward sloping with a little decline on twenty seven years maturity and by 

this, we can infer that the longer the maturity of a security, the higher its expected 

yield. Also observed is the negative yield recorded on the one year maturity as 

shown on the minimum yield. There is also a higher volatility with one year having 

the highest while the twenty seven years maturity have the lowest volatility. 

 

2.3. How Do We Predict the In-Sample Yield of   ? 

The (Bjork and Christensen, 1999) four-factor model can be used to estimate in-

sample of    ( as time to maturity) given an observed yield, the model parameters 

were estimated using the ordinary least square method. The result is presented in 

table 1. 
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Table 2: The Beta Coefficients 

` Unstandardized Coefficients Standardized 

Coefficients 

t  Sig. 

B  Std. Error Beta 

1 
1  9.432 .204  46.149 .000 

2  -10.450 14.629 -1.595 -.714 .498 

3  -2.131 7.601 -.137 -.280 .787 

4  6.742 16.883 .744 .399 .702 

Source: author’s computation via SPSS 23  

The parameters as estimated in the above table 2 can be substituted for the estimation 

of f  in-sample maturities that were not captured on the observed data. Since the in-

sample yield does not exceed a maturity of more than twenty nine years, we write 

the conditional model for in-sample estimation of yield as follows: 
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for  0 348         (59) 
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The figure 2 below shows the model yield curve and the observed yield curve  

Figure 2: Observed and Predicted yield curve 

 

2.4 How Does the Model Fit into the Observed Data? 

 

The measure goodness of fit is determined when ordinary lease square method is 

applied on data by 2R  adjusted. The model measure of fit analysis is depicted in table
3 . 

 
Table 4: Model summary 

Model R  R  Square Adjusted R  Square Std. Error of the 

Estimate 

1 .990a .980 .971 .242769635 

 Source: author’s computation via SPSS 23  

From the above table, the R  square ( 2R ) is 0.980 and the R  square adjusted is 0.971  

with the standard error of the estimate of 0.242769635 . Using the adjusted R  Square 

as our measure of goodness of fit, we can say that the observed data can be explained 

by the model with 97.1 % degree of accuracy. Therefore, we can conclude that the 

model fit well on the observed data and can be used for further studies or purposes 

 

2.5. Does Time to Maturity Have an Effect on Term Structure of Interest Rate? 

 

The relationship that existed between time to maturity of a set of a bond and its 

corresponding yield is referred to as the term structure of interest rate. To determine 

whether time to maturity has an effect on the term structure of interest rate, we used 

correlation between time to maturity and its corresponding as presented in table 4  



M. G.Ogungbenle  

73 
 

The above table 4  of the Pearson correlation reveals that the correlation is significant 

at 0.01  level. Therefore, we conclude that time to maturity has an effect on term 

structure of interest rate. 

 

3. Results and Discussion 

In table1, it was revealed that as time to maturity increases, the yield also increases. 

This shows that the yield of Nigerian Eurobond is directly proportional to its time to 

maturity since the slope is positive. However, the aggregate descriptive statistics 

confirms a positive slope. The analysis of the Bjork and Christensen’s four-factor 

model reveals that the in-sample maturities that were not captured on the observed 

data can be estimated with constraint of 348 months. The analysis of goodness of fit 

of the (Bjork and Christensen, 1999) four-factor model shows that the model fits in 

well into the observed data. This is indicated by R  square adjusted with the value as 
0.971 which means that 97.1 %  of the observed data can be explained by the model. 

The predicted yields for 1 , 2 , 3  and 4  are shown in figures tables 5 , tables 6

,tables 7 , tables 8 while the predicted yield curves are depicted in figures 3 , figures 

4 , figures 5  and figures 6   

Figure 3: Predicted Yield using values of 1  

 

 

Table 3: Correlations 

 Yield Maturity 

Yield Pearson Correlation 1 .826** 

Sig. (2-tailed)  .002 

N 11 11 

Maturity Pearson Correlation .826** 1 

Sig. (2-tailed) .002  

N 11 11 

Source: author’s computation via SPSS 23  
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Table 5: Predicted yields using different values of 1  

 Time to maturity 

  

𝛽1=9.432  𝛽1=10.432  𝛽1=11.432  𝛽1=12.432  𝛽1=13.432 

1 year 5.075579 6.075579 7.075579 8.075579 9.075579 

2 years 5.496644 6.496644 7.496644 8.496644 9.496644 

3 years 6.090609 7.090609 8.090609 9.090609 10.09061 

5 years 7.055196 8.055196 9.055196 10.0552 11.0552 

7 years 7.65919 8.65919 9.65919 10.65919 11.65919 

10 years 8.174346 9.174346 10.17435 11.17435 12.17435 

11 years 8.287524 9.287524 10.28752 11.28752 12.28752 

12 years 8.382358 9.382358 10.38236 11.38236 12.38236 

18 years 8.731875 9.731875 10.73188 11.73188 12.73188 

27 years 8.965246 9.965246 10.96525 11.96525 12.96525 

29 years 8.997436 9.997436 10.99744 11.99744 12.99744 

 

Figure 4: Predicted yields using different values 2  

 

 

 

 

Source: author’s computation via SPSS 23  
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Table 6: Predicted yields using different values of 2  

 Time to 

maturity  𝛽2=-10.45   𝛽2=-9.45   𝛽2=-8.45   𝛽2=-7.45   𝛽2=-6.45 

1 year 5.075579 5.785038 6.494497 7.203956 7.913415 

2 years 5.496644 6.022182 6.547719 7.073256 7.598794 

3 years 6.090609 6.495799 6.900988 7.306177 7.711367 

5 years 7.055196 7.321779 7.588362 7.854945 8.121527 

7 years 7.65919 7.853493 8.047796 8.242099 8.436402 

10 years 8.174346 8.311088 8.447829 8.584571 8.721313 

11 years 8.287524 8.411878 8.536232 8.660586 8.784939 

12 years 8.382358 8.496368 8.610378 8.724388 8.838398 

18 years 8.731875 8.807894 8.883912 8.959931 9.035949 

27 years 8.965246 9.015925 9.066604 9.117283 9.167962 

29 years 8.997436 9.04462 9.091804 9.138988 9.186172 

 Source: authors’ computation via SPSS 23 

Figure 5: Predicted yields using different values 3  

 

 

  



Journal of Technology and Value Addition, Volume 4 (2), July, 2022: (56-79) 

 

76 
 

Table 7: Predicted yields using different values of 3   

 Time to 

maturity   𝛽3=-2.131 𝛽3=-1.131 𝛽3=-0.131 𝛽3=0.869 𝛽3=1.869 

1 year 5.075579 5.303522 5.531465 5.759409 5.987352 

2 years 5.496644 5.790324 6.084004 6.377684 6.671364 

3 years 6.090609 6.384155 6.677702 6.971248 7.264795 

5 years 7.055196 7.295894 7.536591 7.777289 8.017986 

7 years 7.65919 7.847491 8.035793 8.224094 8.412395 

10 years 8.174346 8.310418 8.446489 8.582561 8.718633 

11 years 8.287524 8.411555 8.535587 8.659618 8.783649 

12 years 8.382358 8.496213 8.610068 8.723922 8.837777 

18 years 8.731875 8.807892 8.883908 8.959925 9.035941 

27 years 8.965246 9.015925 9.066604 9.117283 9.167962 

29 years 8.997436 9.04462 9.091804 9.138988 9.186172 

    Source: author’s computation via SPSS 23 

Figure 6: Predicted yields using different values 4  
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Table 8 : predicted yields using different values of  4  

 Time to 

maturity  𝛽4=6.72 𝛽4=7.72  𝛽4=8.72 𝛽4=9.72  𝛽4=10.72 

1 year 5.075579 5.601116 6.126654 6.652191 7.177729 

2 years 5.496644 5.820338 6.144031 6.467725 6.791419 

3 years 6.090609 6.315822 6.541035 6.766248 6.991461 

5 years 7.055196 7.191938 7.32868 7.465421 7.602163 

7 years 7.65919 7.756925 7.854659 7.952394 8.050128 

10 years 8.174346 8.242763 8.311179 8.379596 8.448013 

11 years 8.287524 8.349721 8.411918 8.474115 8.536312 

12 years 8.382358 8.439372 8.496386 8.5534 8.610414 

18 years 8.731875 8.769885 8.807894 8.845903 8.883913 

27 years 8.965246 8.990586 9.015925 9.041265 9.066604 

29 years 8.997436 9.021028 9.04462 9.068212 9.091804 

Source: author’s computation via SPSS23  
 

4. Conclusion 

Term structure modelling is significant as a result of the opportunities it offers to the 

investors and regulatory authorities who would apply the results obtained from it to 

take decision. This paper essentially focuses on estimating the term structure of 

interest rate of the Nigerian Eurobond for the year 2020. The data obtained for this 

study was obtained from the debt management office. The data contains 11 

maturities (tenors) which include one year, two years, three years, five years, seven 

years, ten years, eleven years, twelve years, eighteen years, twenty seven years and 

twenty nine years. The study employed the (Bjork & Christensen, 1999) four-factor 

model in order to analyze and predict the yields curve and also the yield that were 

not captured by the observed data. The data obtained from historical daily transaction 

report of the Nigerian Eurobond was analyzed using descriptive statistics. The study 

confirms that in the descriptive statistics, the aggregate yield curve is upward 

sloping. The Bjork and Christensen model four-factor parameters that was analyzed 

through ordinary least square method after obtaining the value of Lamda enables us 

to model and predict the in-sample yields. Estimating the Beta’s of a Bjork and 

Christensen’s model is conducted by applying a least square methodology and the 

yield modelling is obtained in accordance with the estimated Beta’s. Computational 

evidence from the result reveals a high goodness of fit which was tested using the R  

square adjusted whose result was 0.97  
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